

Recommended Practices for Geometric and Assembly Validation Properties

Release 3.2

December 18, 2012

Contacts

Jochen Boy

ProSTEP iViP Association

Dolivostraße 11

64293 Darmstadt / Germany

jochen.boy@prostep.com

Phil Rosché

PDES, Inc.

5300 International Blvd.

North Charleston, SC 29418 USA

phil.rosche@scra.org

Doug Cheney

ITI TranscenData

doug.cheney@transcendata.com

© CAx Implementor Forum

Table of Contents

1	Int	roduction	4
2	Sc	ope	4
3	Do	ocument Identification	5
4	Ge	eometric Validation Properties	5
	4.1 4.2 4.3 4.4 4.5 4.6 4.7	Fundamental Concepts Definitions of Units Validation Properties at the Part/Product level. Validation Properties at the Geometry level. Volume Surface Area Centroid	6
		Independent Curve Length Independent Curve Centroid Evaluation of the Geometric Validation Properties itended Validation Properties oud Of PointS (COPS) Validation Properties	12 13 1 4
	6.1 6.2 6.3	Requirements and Distribution Validation Guidelines Instantiationssembly Validation Properties	15 16
	7.1 7.2 Su	Number of Children Notional Solids Centroid Position Immary of Imposed Attribute Values	21
A	nnex	A Part 21 File Examples	2 4
A	nnex	R Availability of implementation schemas	24
	B.1 B.2	AP214	

List of Figures

Figure 1: Validation Properties at the Part/Product level	6
Figure 2: Validation Properties at the Geometry level	8
Figure 3: Geometric Validation Property "Volume"	9
Figure 4: Geometric Validation Property "Surface Area"	10
Figure 5: Geometric Validation Property "Centroid"	11
Figure 6: Geometric Validation Property "Independent Curve Length"	12
Figure 7: Geometric Validation Property "Independent Curve Centroid"	13
Figure 8: Extended Validation Property	15
Figure 9: COPS – Smooth Sampling Points	16
Figure 10: COPS – Sharp Sampling Points	17
Figure 11: COPS – Sampling Points for an Open Boundary	17
Figure 12: Cloud Of PointS Validation Property	18
Figure 13: "Number of Children" Assembly Validation Property	20
Figure 14: "Notional Solids Centroid Position" Validation Property	22
Figure 15: Table of Imposed Attribute Values	23

Document History

This document replaces the following two CAx-IF Recommended Practices:

- Recommended Practices for Geometric Validation Properties; 2nd Extension; published June 16, 2008
- Recommended Practices for Assembly Validation Properties; Release 1.0; published June 11, 2008

The current document covers the scope of the preceding ones, and adds new and updated concepts.

1 Introduction

This document specifies recommended practices for the exchange of geometric validation properties for solid and surface models. For solid models the properties addressed are centroid, volume, and surface area, and for surface models the properties specified are centroid and surface area. In addition, validation properties for independent curves – i.e. curves included in solid or surface models that are not edges of solids or faces – may be added as well. Geometric validation properties may also be assigned to collections of solids/surfaces which represent the overall validation properties for assembly nodes. This set of data is often referred to as "basic validation properties."

The first extension of the geometric validation properties introduced the assignment of centroid values for the validation of correct positioning of instances within an assembly. This approach is typically known as "extended validation properties."

The second revision of the recommended practices added the mechanisms for including an additional set of surface checking properties, commonly known as the Cloud Of PointS, or COPS, method. This methodology allows for the inclusion in the exchange file of a set of points on each individual face, to ensure that the translated face does not deviate from the original surface by more than an accepted amount. This was deemed to be a required check for Long Term Archiving and Retrieval. COPS is also a requirement for certified data delivery using STEP.

The current third version of this recommended practices document includes the definition of the so-called "assembly validation properties", which were previously published as a separate document. These provide a verification capability where geometry is not present when external references are used. They will make it possible for the exchange of assembly data to be verified in two ways. The first will ensure that the number of instances found at each node is correct. The second will ensure that the position and orientation information for each instance is correct.

2 Scope

The following are within scope of this document:

- Assignment of geometric validation properties to individual solids or surface models.
 These properties include centroid, volume, and total surface area for solids. For surface
 models the properties addressed are centroid and surface area. In addition, the total
 length of independent curves may be added.
- Assignment of geometric validation properties to structures of surfaces and solids that represent assemblies and their components.
- Assignment of geometric validation properties to component instances in an assembly.
- Assignment of COPS validation properties to topological face entities, both in surface models and solids.
- Assignment of specific properties for the top node and intermediate nodes of a product structure.
 - Assignment of a numerical property to such nodes to define the number of child instances in that node.
 - Assignment of a centroid type property to such nodes to simulate the existence of a pre-defined notional solid within each child instance node.

The following are outside the scope of this document:

- Assignment of properties for non-solid or non-surface models.
- Assignment of any properties to a product or its definition.
- Support for other forms of product structure where ASSEMBLY_COMPONENT_USAGE entities or other subtypes are used to relate PRODUCT_DEFINITIONS instead of NEXT_-ASSEMBLY USAGE OCCURRENCE entities.

3 Document Identification

For validation purposes, STEP processors shall state which Recommended Practice document and version thereof have been used in the creation of the STEP file. This will not only indicate what information a consumer can expect to find in the file, but even more important where to find it in the file.

This shall be done by adding a pre-defined ID string to the description attribute of the file_description entity in the STEP file header, which is a list of strings. The ID string consists of four values delimitated by a triple dash ('---'). The values are:

```
Document Type---Document Name---Document Version---Publication Date
```

The string corresponding to this version of this document is:

```
CAx-IF Rec.Pracs.---Geometric and Assembly Validation Properties---3.2---2012-12-18
```

It will appear in a STEP file as follows:

```
FILE_DESCRIPTION(('...','CAx-IF Rec.Pracs.--- Geometric and Assembly Validation Properties ---3.2---2012-12-18',),'2;1');
```

4 Geometric Validation Properties

The following sections cover the aspects of where to define validation properties in the product structure, and the different types of geometric validation properties.

4.1 Fundamental Concepts

A geometric validation property is a characteristic of a solid/surface model or a collection of them. When used to validate an exchange:

- The sender would populate the geometric validation properties in the exchange file, usually calculated by their CAD/geometry system.
- The receiver would perform geometric translations or transformations that are necessary on the solid or surface model.
- The receiver would then calculate the properties of the resultant geometry.
- A comparison would be performed against these values in the exchange file.
- If they are within an agreed tolerance, the exchange is deemed to have been validated.

There are several agreed levels of Validation Properties:

Geometric validation properties assigned to a solid or surface model and/or individual shape representations within an assembly are known as "basic validation properties". This gives the capability of validating the exchange of each shape and assembly level.

When validation properties are assigned to an assembly instance, then this is known as "extended validation properties". This extension allows the receiving system to determine which instance in an assembly has failed if the properties do not match. See section 5.

Validation properties included in the form of sampling points for individual faces are referred to as Cloud Of PointS, or COPS. This extension of the recommended practices allows the receiving system to check for misplacements or shape changes of individual faces, see section 6.

Validation properties in an assembly structure to verify its completeness and correctness of the included transformations without having to process the part geometries are called "assembly validation properties", and are defined in section 7.

4.2 Definitions of Units

The validation properties defined in this document represent different types of measures: for volume, for area, and for length. Each of these requires a correct definition of the applied unit of measure in the STEP file.

A comprehensive guide on the correct definition of these and other units is given in Annex C of the CAx-IF Recommended Practices for User Defined Attributes, which can be found on the CAx-IF Homepage (www.cax-if.de and www.cax-if.org) under "Joint Testing Information".

4.3 Validation Properties at the Part/Product level

Geometric Validation Properties can be attached to the geometry in a STEP file at different levels of granularity, i.e. single solids, faces or curves, or entire parts. Certain CAx systems can determine the validation information for individual geometries within a part, whereas others are designed as a "one solid per part" system, and can only determine validation properties at the part level. The following diagram shows how validation properties are attached to the geometry defining the entire product.

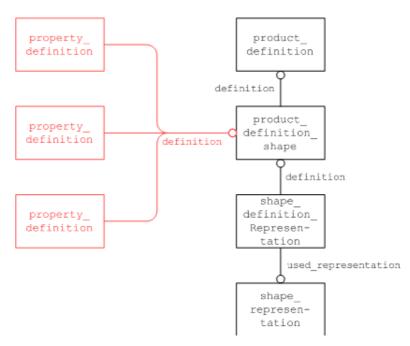


Figure 1: Validation Properties at the Part/Product level

Part21 Example:

```
#15=PRODUCT_DEFINITION('design',$,#14,#9);
#907=PRODUCT_DEFINITION_SHAPE('',$,#15);
#960=SHAPE_DEFINITION_REPRESENTATION(#907,#896);
#896=SHAPE_REPRESENTATION('#896',(#895,#442,#447,#452,#889),#891);
#910=PROPERTY_DEFINITION('geometric validation property', 'volume of shape rep #896 - part44_lbrackass',#907);
#914=PROPERTY_DEFINITION('geometric validation property', 'area of shape rep #896 - part44_lbrackass',#907);
#918=PROPERTY_DEFINITION('geometric validation property', 'centroid of shape rep #896 - part44_lbrackass',#907);
```

4.4 Validation Properties at the Geometry level

Important Agreement:

Every CAD system supporting validation properties on export shall attach them at the part/product level. If an exporting CAD system also supports validation properties at the geometry level, it may add them additionally.

Motivation for this agreement:

- Only if the validation properties are attached at the part/product level, it can be guaranteed that every CAD system finds them. If system A only attaches them at the geometry level, and system B importing the file does not support multiple bodies per part, it won't be able to find the information since it will look for it at the part/product level only.
- Another important motivation for this is PDM interoperability: If an assembly is exported
 using the "external references" mechanism, i.e. it is split into a structure file and several
 geometry files, the validation properties (which are deemed PDM-relevant data) will be
 included in the structure file only if they are attached at the part/product level. Validation
 properties at the geometry level will be stored in the geometry files and hence are inaccessible for the PDM system.

The attachment of validation properties to a single solid, surface or curve within the product geometry is handled via the SHAPE_ASPECT entity. The method by which this relationship is conveyed is shown in Figure 2 below.

```
#21=PRODUCT_DEFINITION('design',$,#20,#9);
#217=MANIFOLD_SOLID_BREP('',#216);
#224=ADVANCED_BREP_SHAPE_REPRESENTATION('#224',(#217,#223),#219);
#231=PRODUCT_DEFINITION_SHAPE('',$,#21);
#232=SHAPE_ASPECT('#232','solid #217',#231,.F.);
#246=PROPERTY_DEFINITION('','Shape for Validation Properties',#232);
#247=SHAPE_DEFINITION_REPRESENTATION(#246,#245);
#245=SHAPE_REPRESENTATION('',(#217),#219);
#961=SHAPE_DEFINITION_REPRESENTATION(#231,#224);
```

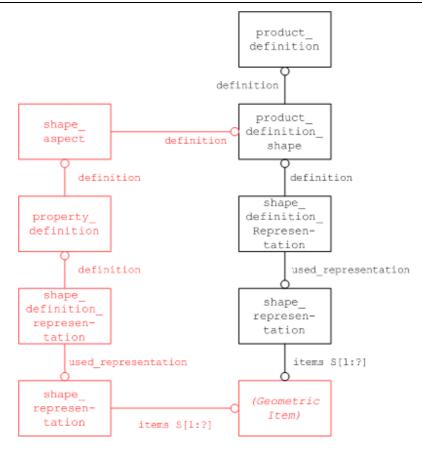



Figure 2: Validation Properties at the Geometry level

In Figure 2, the "Geometric Item" is the item to which the validation properties are attached. This can be a:

- MANIFOLD_SOLID_BREP
- BREP_WITH_VOIDS
- SHELL_BASED_SURFACE_MODEL
- GEOMETRICALLY_BOUNDED_WIREFRAME_SHAPE_REPRESENTATION
- OPEN SHELL
- CLOSED_SHELL
- ADVANCED_FACE
- GEOMETRIC_CURVE_SET

<u>Note</u> that for the different entity types, different sets of validation properties apply. While for solids (BREPs), volume, area and centroid apply, for shells and surfaces only, area and cloud of points are applicable. For curves and wireframes, total curve length is the only meaningful value.

4.5 Volume

Volume specifies the amount of space occupied by the solid model as measured in cubic units. During an exchange this can be used to validate the success of creating an equivalent solid via the translation.

Figure 3 illustrates the STEP entities required to specify the volume of the original solid, or part, in the native system.

The PROPERTY_DEFINITION entity the value is attached to in this and the following diagrams is the same as the one attached to the part or geometry the value applies to; see Figure 1 and Figure 2 respectively.

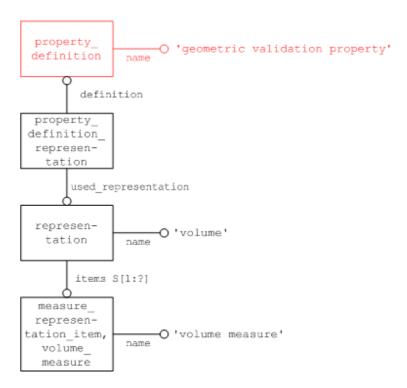


Figure 3: Geometric Validation Property "Volume"

Part21 Example:

```
#233=MEASURE_REPRESENTATION_ITEM('volume measure',
VOLUME_MEASURE(664.38055098),#226);
#234=REPRESENTATION('volume',(#233),#219);
#235=PROPERTY_DEFINITION('geometric validation property', 'volume of #217',#232);
#236=PROPERTY_DEFINITION_REPRESENTATION(#235,#234);
```

4.6 Surface Area

Surface area specifies the area measurement of the surface of the entire solid or surface model. By default, this will include any voids in the model. Figure 4 below illustrates the relevant entities and their mandatory attributes used in the assignment of the surface area validation property.

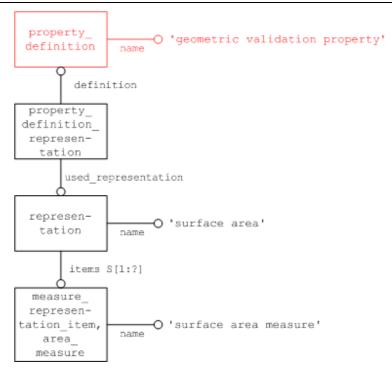


Figure 4: Geometric Validation Property "Surface Area"

<u>Note:</u> Since CATIA calculates the 'wetted area' (i.e. voids will not be taken into account) instead of the total surface area, the validation mechanism will report a 'false error' when exchanging a model with voids in it between a CATIA-based and a non-CATIA-based system. Therefore, when exporting validation properties from a CATIA-based system, the name of the MEASURE_REPRESENTATION_ITEM (see Figure 4) shall be 'wetted area measure' instead of 'surface area measure'.

Part21 Example:

```
#237=MEASURE_REPRESENTATION_ITEM('surface area measure',
AREA_MEASURE(747.16814693), #229);
#238=REPRESENTATION('surface area',(#237), #219);
#239=PROPERTY_DEFINITION('geometric validation property', 'area of #217',
#232);
#240=PROPERTY_DEFINITION_REPRESENTATION(#239, #238);
```

4.7 Centroid

A centroid is the center of volume of a geometric solid model. The position of the centroid is an invariant datum relative to the model origin, thus during an exchange, this can be used to validate the positional integrity of any geometric translations.

Figure 5 illustrates the relevant entities and their mandatory attributes used in the assignment of a centroid for validation:

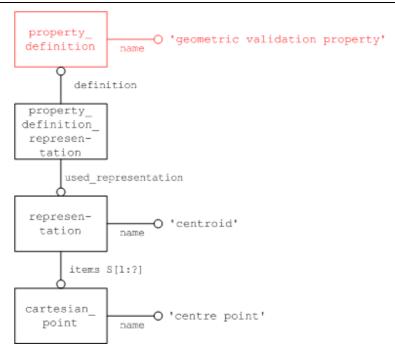


Figure 5: Geometric Validation Property "Centroid"

Part21 Example:

```
#241=CARTESIAN_POINT('centre point',(0.0,0.0,1.5));
#242=REPRESENTATION('centroid',(#241),#219);
#243=PROPERTY_DEFINITION('geometric validation property', 'centroid of #217',#232);
#244=PROPERTY_DEFINITION_REPRESENTATION(#243,#242);
```

4.8 Independent Curve Length

A solid or surface model may contain additional, independent curves, where 'independent' means these curves are not edge curves of faces or solids. The total length of these curves in a model can be validated to make sure the information was not lost during transfer. The independent curve length geometric validation property keeps this value as a sum at part level. The intention is not to define the curve length for each individual curve separately at the geometry level; however, there are cases where this might be useful for selected curves.

Figure 6 illustrates the STEP entities required to specify the total length of the independent curves in the model.

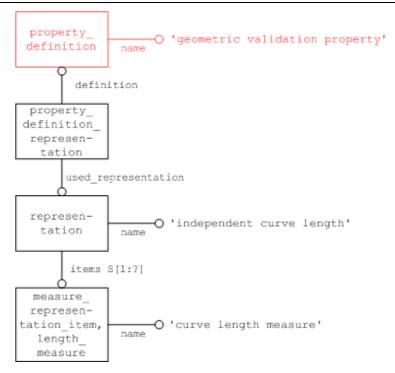


Figure 6: Geometric Validation Property "Independent Curve Length"

Part21 Example:

```
#257=MEASURE_REPRESENTATION_ITEM('curve length measure',
LENGTH_MEASURE(47.1681),#249);
#258=REPRESENTATION('independent curve length',(#257),#219);
#259=PROPERTY_DEFINITION('geometric validation property','',#252);
#260=PROPERTY_DEFINITION_REPRESENTATION(#259,#258);
```

4.9 Independent Curve Centroid

In addition to the total length of independent curves in a model (see previous section), their position is of interest as well. The independent curve centroid keeps the combined centroid of all independent curves at part level. The intention is not to define the centroid for each individual curve separately at the geometry level; however, there are cases where this might be useful for selected curves.

Figure 7 below illustrates the STEP entities required to specify the total length of the independent curves in the model.

```
#257=MEASURE_REPRESENTATION_ITEM('curve length measure',
LENGTH_MEASURE(47.1681),#249);
#258=REPRESENTATION('independent curve length',(#257),#219);
#259=PROPERTY_DEFINITION('geometric validation property','',#252);
#260=PROPERTY_DEFINITION_REPRESENTATION(#259,#258);
```

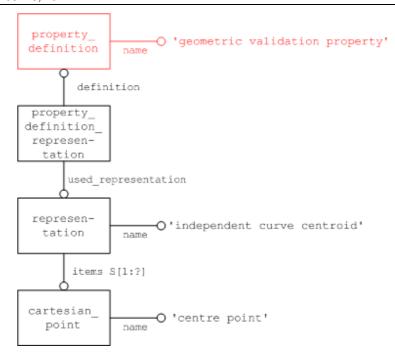



Figure 7: Geometric Validation Property "Independent Curve Centroid"

4.10 Evaluation of the Geometric Validation Properties

While the basic mechanism is the same for all validation properties, their evaluation, and which thresholds are used to determine if the respective exchange was a success or not, depend on user and business process requirements. In all cases, the result is obtained by comparing the value calculated in the target system from the imported model with the corresponding value provided in the STEP file as a validation property. The CAx-IF typically uses a threefold result system:

- "green" result: Successful exchange
- "yellow" result: Problems during exchange, but resulting model in target system may still be usable for some applications
- "red" result: Exchange failed.

For Volume, Area and Curve length validation, the thresholds usually applied are:

- "green" result: less than 1% deviation
- "yellow" result: between 1% and 10% deviation
- "red" result: more than 10% deviation

For Centroid validation, there are two possible ways for evaluation. The basic method is by calculating the absolute three-dimensional distance (in millimeters) between the Centroid in the target system and the Centroid as transferred by the validation property:

- "green" result: less than 1mm deviation
- "vellow" result: between 1mm and 5mm deviation
- "red" result: more than 5mm deviation

However, this does not take into account the actual model size. User feedback showed that while precise placement is required for small parts, larger tolerances may be acceptable for bigger parts. Therefore, the absolute centroid deviation will be scaled (i.e. divided) by the model size, which is defined as the length of the space diagonal of the three-dimensional bounding box enclosing the entire model. This also eliminates the need for unit conversion.

- "green" result: less than 0.1% deviation
- "yellow" result: between 0.1% and 1% deviation
- "red" result: more than 1% deviation

There is one limitation to this evaluation method: it does not work for small parts. Assuming a model accuracy of 0.02mm, the minimum model size is 0.02mm / 0.1% = 20mm. For parts with a space diagonal below 20mm, they need to be checked with the absolute distance, since the scaled Centroid deviation may not be meaningful because of rounding errors caused by the model accuracy.

5 Extended Validation Properties

A shortcoming of the (basic) Geometric Validation Properties is that it fails to identify the component at fault when a correct geometric exchange has taken place, but the component has been incorrectly positioned within an assembly.

In order to avoid this, the Extended Validation Properties mechanism was agreed upon. This provides centroid information for an occurrence of a component or sub-assembly in the context of its parent, i.e. the centroid it would have in the parent part, if correctly positioned. This information allows the post-processor to traverse up the tree from the leaf parts, determining if they have been correctly positioned in their respective parents, and so identify where, if any, positional errors have occurred.

The extended validation properties only require the instantiation of a "centroid" validation property (cp. section 4.7) which is attached in the following manner:

```
#419=(REPRESENTATION_RELATIONSHIP('#419','part44_nutbolt : part44_bolt',
#371,#417)REPRESENTATION_RELATIONSHIP_WITH_TRANSFORMATION(#411)
#972=NEXT_ASSEMBLY_USAGE_OCCURRENCE('PART44_BOLT','','PART44_BOLT',#33,
#27,'PART44_BOLT');
#973=PRODUCT_DEFINITION_SHAPE('PART44_BOLT',$,#972);
#974=CONTEXT_DEPENDENT_SHAPE_REPRESENTATION(#419,#973);
#977=PROPERTY_DEFINITION('geometric validation property', 'centroid of instance - PART44_BOLT',#973);
```

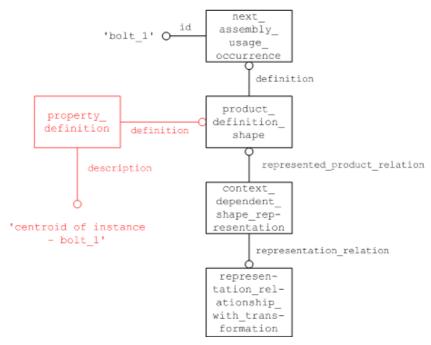



Figure 8: Extended Validation Property

6 Cloud Of PointS (COPS) Validation Properties

The "Cloud Of PointS" checking mechanism gives a set of sampling points which lie upon the face within the originating system. By checking the deviation of these points from the resulting surface, post STEP translation, a measure of confidence can be achieved that the face has not deviated from its original position or shape by an unacceptable amount.

6.1 Requirements and Distribution

To ensure reliable and meaningful results, the sampling points defined for this type of validation need to comply with the following requirements:

- <u>Accuracy:</u> Each point must be evaluated by the native system precisely on the surface or curve, as explained below.
- Active region: Each point must be inside or on the boundary of the corresponding face or edge, as explained below.
- Coverage: Sampling points must be evaluated inside a face surface and on its boundary.

A good balance needs to be found for the number of sampling points. Too many points rasticcally increase the STEP file size, while on the other hand too few points decrease the sensitivity of this mechanism. Therefore, the following distribution parameters should be considered:

- Minimum number of points per face: Ensures adequate coverage of tiny faces (which are most likely to change during translation).
- <u>Maximum spacing between points:</u> Ensures reasonable distribution. This can be specified relative to model extents to enable the same parameter to be used for parts of different sizes.

 <u>Chordal deviation tolerance</u>: Ensures proper coverage of faces with high curvature (which are more likely to change during translation).

There is no "best" algorithm to distribute the sampling points, as "best" depends on a variety of parameters. However, experience shows that algorithms used to create FEM meshes for computer-based simulations render good distributions for the COPS points.

6.2 Validation Guidelines

For the evaluation of the cloud of points, two different classes of sampling points have to be considered:

- Smooth points must be evaluated on the surface and lie inside the domain of the face or on a smooth boundary.
- <u>Sharp points</u> must be evaluated on the edge curve within the active region of the sharp edge.

Each distinct section of the boundary of a face, corresponding to each edge entity, must be classified as either smooth or sharp and only have sampling points assigned to either the smooth or the sharp set, not both.

The following recommendations are given for the evaluation itself:

Smooth points must be evaluated on the surface and lie inside the domain of the face or on a smooth boundary. Edge curves as well as parameter space curves may be used to calculate smooth boundary points, but either way the points must satisfy this requirement, i.e. smooth edge curve points must be projected into the active region of the face surface and parameter space curves satisfy this requirement by definition.

Smooth points must be projected to the nearest active face surface region in the target model. This allows "arbitrary" edges to move along the smooth profile of the model's geometry, or be eliminated altogether, in order to satisfy the topology requirements of the target system.

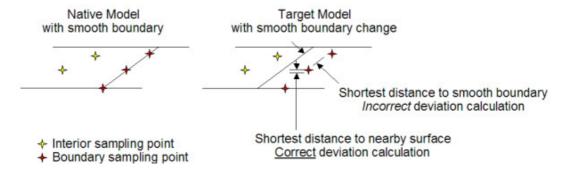


Figure 9: COPS – Smooth Sampling Points

Sharp points must be evaluated on the edge curve within the active region of the sharp edge. An edge is defined as sharp if it is non-manifold (not connected to only two faces) or if it is manifold and any surface normal angle calculations within the active region of the edge are non-tangent. Although different recommendations exist concerning the maximum threshold for the angle, a 1.0 degree limit seems to be practical. The risk in defining this threshold too low is that edges will be classified as sharp which the target system would consider smooth and false negative sharp point deviations will be reported on edges which the target user feels are arbitrary and should be allowed to move along the smooth profile of the model's geometry.

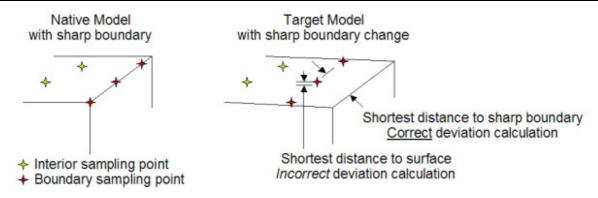


Figure 10: COPS - Sharp Sampling Points

Sharp points must be projected to the nearest active sharp edge curve region in the target model. This precisely identifies any deviations in the "real" edges that often have a direct relationship to the design intent of the model.

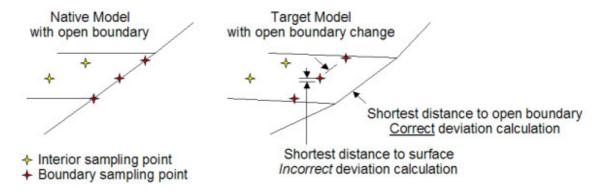


Figure 11: COPS – Sampling Points for an Open Boundary

These recommendations are internally consistent: smooth points are evaluated on surfaces and projected to surfaces while sharp points are evaluated on curves and projected to curves.

6.3 Instantiation

Figure 12 in the next page illustrates the relevant entities and their mandatory attributes used in the assignment of "Cloud Of PointS" for validation. It also displays the link between the sampling points and the face they are defined for.

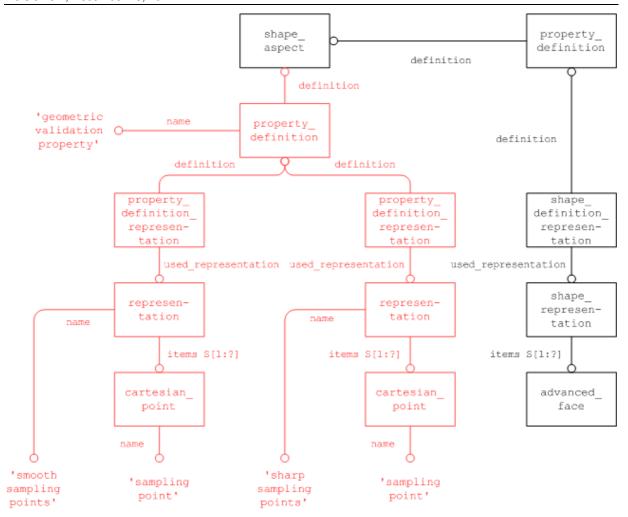


Figure 12: Cloud Of PointS Validation Property

All CARTESIAN_POINTS for sampling points of the same class (smooth / sharp) for a face shall be gathered in the same REPRESENTATION. Those in turn shall be linked through the same PROPERTY_DEFINITION to the SHAPE_ASPECT describing the face to be validated by the sampling points.

```
#251=ADVANCED_FACE('', (#236,#239,#242,#245),#250,.T.);
#471=CARTESIAN_POINT('#471', (13.33333333,10.,1.03163017));
#937=SHAPE_ASPECT('#937','aspect of #251',#419,.F.);
#938=REPRESENTATION('smooth sampling points', (#471,#472,#473,#474,#475);
#939=PROPERTY_DEFINITION('geometric validation property', 'surface validation data for #251',#937);
#940=PROPERTY_DEFINITION_REPRESENTATION(#939,#938);
#942=PROPERTY_DEFINITION('','shape for validation properties',#937);
#943=SHAPE_DEFINITION_REPRESENTATION(#942,#941);
#941=SHAPE_REPRESENTATION('',(#251),#407);
```


7 Assembly Validation Properties

The extended validation properties for assembly data as defined in section 5 provides a suitable mechanism where geometrical data is provided along with the product structure. However, for incremental exchange of STEP files, where the product structure might be included but the geometry of the component parts may be omitted, this is not applicable. Similarly, if the product structure is broken down into smaller sub-assemblies (so-called "nested" external references), the component data is not available in the sub-assembly files and so again this is not applicable.

The additional Assembly Validation Properties introduced in this section will provide a verification capability where geometry is not present. This will make it possible for the exchange of assembly data to be verified in two ways. The first will ensure that the number of instances found at each node is correct. The second will ensure that the position and orientation information for each instance is correct.

The following two concepts are defined:

Number of Children

The first of these allows the pattern of the product structure to be verified, i.e. each node has the correct number of instances or branches.

Notional Solids Centroid Position

The second of these allows the positional information for each instance in the product structure to be verified, i.e. the coordinate systems for each child node is positioned and oriented correctly relative to its parent. Note that this condition is not mathematically guaranteed by this methodology, but the chance of an incorrect position and orientation combining to give the correct result is extremely small.

7.1 Number of Children

Each node which is the parent node of at least one instance will have a property attached to enumerate the actual number of child instances of that node. This number will be defined by the sending system. On receipt of the data, the system which post-processes the STEP file will check that the translated assembly data has the correct number of child instances at each node.

This property will be defined by STEP entities in the following way:

- Where a PRODUCT_DEFINITION entity is used as the RELATING_PRODUCT_DEFINITION by one or more NEXT_ASSEMBLY_USAGE_OCCURRENCE entities, it will have a PROPERTY_DEFINITION for which the name will be "assembly validation property".
- The REPRESENTATION linked to the PROPERTY_DEFINITION by a PROPERTY_DEF-INITION REPRESENTATION will have the name "number of children".
- The single REPRESENTATION_ITEM for this REPRESENTATION will have the name "number of children". There are two ways of implementing this. Though the first way is valid in all Aps, the second way preserves the integer type of this value:
 - o In AP203e1 and AP214, it will be a VALUE_REPRESENTATION_ITEM with a VALUE COMPONENT which is a COUNT MEASURE (real number).
 - o In AP203e2 and AP242, it will be an INTEGER_REPRESENTATION_ITEM where THE_VALUE is an integer value.

• The value defined will represent the number of NEXT_ASSEMBLY_USAGE_OCCURRENCE entities for which the RELATING_PRODUCT_DEFINITION is the PRODUCT_DEFINITION for which the property is defined, as illustrated below:

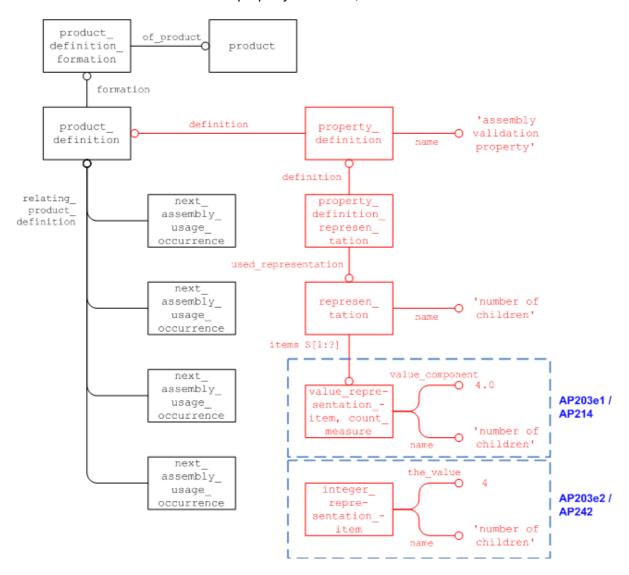


Figure 13: "Number of Children" Assembly Validation Property

```
#10=PRODUCT('as1','as1',$,(#8));
#14=PRODUCT_DEFINITION_FORMATION('v0','v0 for as1',#10);
#15=PRODUCT_DEFINITION('design',$,#14,#9);
#333=PROPERTY_DEFINITION('assembly validation property','',#15);
#335=REPRESENTATION('number of children',(#334),#266);
#336=PROPERTY_DEFINITION_REPRESENTATION(#333,#335);
/* AP203e1 / AP214 */
#334=VALUE_REPRESENTATION_ITEM('number of children',COUNT_MEASURE(4.0));
/* AP203e2 / AP242 */
#334=INTEGER_REPRESENTATION_ITEM('number of children',4);
```


Where the following instance definitions occur within the STEP file which have #15 as the RELATING_PRODUCT_DEFINITION:

```
#294=NEXT_ASSEMBLY_USAGE_OCCURRENCE('PART44_PLATE','','PART44_PLATE',#15,#21,
'PART44_PLATE');
#315=NEXT_ASSEMBLY_USAGE_OCCURRENCE('PART44_LBRACKASS_1','',
'PART44_LBRACKASS',#15,#51,'PART44_LBRACKASS');
#318=NEXT_ASSEMBLY_USAGE_OCCURRENCE('PART44_LBRACKASS_2','',
'PART44_LBRACKASS',#15,#51,'PART44_LBRACKASS');
#330=NEXT_ASSEMBLY_USAGE_OCCURRENCE('PART44_RODASS','','PART44_RODASS',#15,
#63,'PART44_RODASS');
```

7.2 Notional Solids Centroid Position

This property is similar to the geometric validation property "centroid" (cp. section 4.7) in that a property representing a location is defined for each sub-assembly. However, in this case the property is not calculated based on any real geometry defined for that product.

For the top node and each intermediate node of a product structure, a notional solid is assumed within the child node of each child instance of that node. Using the positional and orientation relationship for each child instance, a centroid position can be calculated for the combined set of notional solids within the set of child instances.

The notional solid will be a cube of size $10 \times 10 \times 10$. The notional solid will be positioned with its centroid at (10.0, 10.0, 10.0) of the coordinate system of the child node. Note that the actual size and shape of the notional solid will not, in fact, affect the overall result. The key data is the centroid position and the assumption that the volume of the notional solid in each child node is the same. Mathematically, the calculated point is the mean of the set of points at (10.0, 10.0, 10.0) within the child nodes.

<u>Note</u> that in contrast to an actual solid centroid, the notional solid itself is not in the STEP file – it is just a convention. Thus, it has to be ensured that the correct geometrical context is used for the notional solids centroid position, in order to guarantee that the units are applied correctly.

The child node may be a leaf node of the overall assembly or another intermediate node within the sub-assembly. Each case is treated in the same way. Even though the child node might be an intermediate node with no actual geometry defined, a notional solid will be assumed for the purpose of this calculation.

The notional centroid for each sub-assembly is influenced only by the notional solid in each of its directly instanced child nodes.

This property will be defined by STEP entities in the following way:

- Where a PRODUCT_DEFINITION entity is used as the RELATING_PRODUCT_DEFINITION by one or more NEXT_ASSEMBLY_USAGE_OCCURRENCE entities, it will have a PROPERTY_DEFINITION for which the name will be "assembly validation property".
- The PROPERTY_DEFINITION description will be "notional solids centroid".
- The REPRESENTATION linked to the PROPERTY_DEFINITION by a PROPERTY_DEF-INITION REPRESENTATION will have the name "notional solids centroid".
- The single REPRESENTATION_ITEM for this REPRESENTATION will have the name "centre point". It will be a CARTESIAN_POINT defining the calculated centroid for the notional

solids assumed for each child node. The child nodes are those PRODUCT_DEFINITIONS defined as a RELATED_PRODUCT_DEFINITION in a NEXT_ASSEMBLY_USAGE_—OCCURRENCE entity for which the RELATING_PRODUCT_DEFINITION is the PRODUCT_—DEFINITION for which the property is defined.

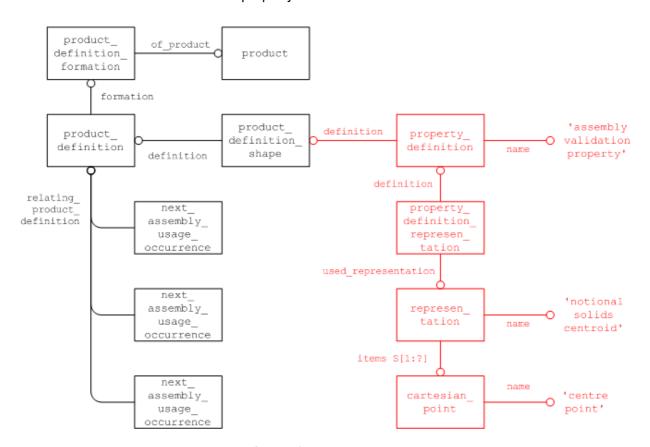


Figure 14: "Notional Solids Centroid Position" Validation Property

Part21 Example:

```
#40=PRODUCT('part44_nutbolt', 'part44_nutbolt', $, (#8));
#44=PRODUCT_DEFINITION_FORMATION('v0', 'v0 for part44_nutbolt', #40);
#45=PRODUCT_DEFINITION('design', $, #44, #9);
#286=PRODUCT_DEFINITION_SHAPE('', $, #45);
#345=PROPERTY_DEFINITION('assembly validation property',
'notional solids centroid', #286);
#346=CARTESIAN_POINT('centre point', (10., 10., 12.));
#347=REPRESENTATION('notional solids centroid', (#346), #172);
#348=PROPERTY_DEFINITION_REPRESENTATION(#345, #347);
```

Where the following instance definitions occur within the STEP file which have #45 as the RELATING_PRODUCT_DEFINITION:

```
#300=NEXT_ASSEMBLY_USAGE_OCCURRENCE('PART44_BOLT','','PART44_BOLT',#45,
#33,'PART44_BOLT');
#303=NEXT_ASSEMBLY_USAGE_OCCURRENCE('PART44_NUT_1','','PART44_NUT',#45,
#39,'PART44_NUT');
```


8 Summary of Imposed Attribute Values

The following constraints on attribute values are imposed in this recommended practice:

Validation Property	<pre>property_definition .name</pre>	representation .name	representation_item .name (*)
Total Volume	'geometric validation property'	'volume'	'volume measure'
Surface Area (**)	'geometric validation property'	'surface area'	'surface area measure'
Centroid	'geometric validation property'	'centroid'	'centre point'
Independent Curve Length	'geometric validation property'	'independent curve length'	'curve length measure'
Independent Curve Centroid	'geometric validation property'	'independent curve centroid'	'centre point'
COPS	'geometric validation property'	'smooth sampling points', 'sharp sampling	'sampling point'
	Lanca cololina d'alada e	points'	
Number of Children	'assembly validation property'	'number of children'	'number of children'
Notional Solids Centroid Position	'assembly validation property'	'notional solids centroid'	'centre point'

Figure 15: Table of Imposed Attribute Values

(*) Note that depending on the type of validation property, the representation_item is either a volume_measure, area_measure, length_measure, count_measure, integer_representation_item or a cartesian_point.

<u>(**) Note</u> that for CATIA-based systems, which calculate "wetted" surface instead of total surface (i.e. voids are not taken into account), the representation_item.name shall be 'wetted area measure' to avoid reporting of false errors.

Annex A Part 21 File Examples

STEP files relating to the capabilities described in this document are available in the public STEP File Library on the CAx-IF homepage; see either http://www.cax-if.org/library/. or http://www.cax-if.org/library/.

The files are based on current schemas for both AP203 Edition 2 and AP214, and have been checked for syntax and compliance with the Recommended Practices.

Annex B Availability of implementation schemas

B.1 AP214

The AP214 schemas support the implementation of the capabilities as described. The schemas can be retrieved from:

- IS Version (2001) http://www.cax-if.de/documents/ap214 is schema.zip
- 3rd Edition (2010) http://www.cax-if.de/documents/AP214E3 2010.zip

B.2 AP203 2nd Edition

The long form EXPRESS schema for the second edition of AP203 can be retrieved from:

http://www.cax-if.de/documents/part403ts_wg3n2635mim_lf.exp

Note that the first edition of AP203 is no longer support in the Recommended Practices.

B.3 AP242

The capabilities described in this document are also supported by AP242, the upcoming joint successor of AP203 and AP214, with no changes to the instantiation.

The latest development longform EXPRESS schema for AP242 can be found in the CAx-IF member area. It will be published on the public web site once approved by ISO.