Test Suite for the CAx Implementor Forum Round 25J October 2009 - March 2010 Release 1.1 January 25, 2010 ## **Contacts:** Jochen Boy ProSTEP iViP Association Taunusstraße 42 80807 Munich, Germany jochen.boy@prostep.com Phil Rosché PDES, Inc. 5300 International Blvd. North Charleston, SC 29418 USA rosche@scra.org # **Contents:** | 1.0 Introduction | . 4 | |---|-----| | 1.1 Functionality tested in this round | . 4 | | 1.2 General test instructions for this round | . 5 | | 1.3 Preliminary testing schedule | . 5 | | 1.4 Copyrights on test cases | . 5 | | 2.0 Synthetic test case specifications | . 6 | | 2.1 Model PP1: PMI Polyline Presentation | | | 2.1.1 Motivation | | | 2.1.2 Approach | . 6 | | 2.1.3 Testing Instructions | . 6 | | 2.1.3.1 Test Models | . 8 | | 2.1.3.2 Statistics | . 8 | | 2.2 Model SP1: PMI Representation & Semantic Presentation | . 9 | | 2.2.1 Motivation | | | 2.2.2 Approach | | | 2.2.3 Testing Instructions | | | 2.2.3.1 Test Models | | | 2.2.3.2 Statistics | | | 2.3 Model UD2: User Defined Attributes | | | 2.3.1 Motivation | | | 2.3.2 Approach | | | 2.3.3 Testing Instructions | | | 2.3.3.1 Construction of the model | | | 2.3.3.2 Statistics | | | 2.4 Model SG1: Supplemental Geometry | | | 2.4.1 Motivation | | | 2.4.2 Approach | | | 2.4.3 Testing Instructions | | | 2.4.3.1 Construction of the SG1 model | | | 2.4.3.2 Statistics | 16 | | 3.0 Production models: PM23 | 17 | | 3.1 Motivation | | | 3.2 Approach | | | 3.3 Testing Instructions | 17 | | 3.3.1 List of available models | 17 | | 3.3.2 Results | 18 | # 1.0 Introduction This document describes the suite of test cases to be used for the twenty-fifth round of testing of the CAx Implementor Forum (CAx-IF). The CAx-IF is a joint testing forum organized by PDES, Inc. and the ProSTEP iViP Association. The test rounds of the CAx-IF concentrate primarily on testing the interoperability and conformance of STEP processors based on AP203 and AP214. The test rounds in general combine testing of synthetic and production models. Production models will in most cases be provided by the member companies of the organizations PDES, Inc. and ProSTEP iViP Association. When production models are not available from the member companies, "production-like" models will be solicited from the various CAx-IF participants. This test suite includes synthetic models for testing the following capabilities: Presentation of Product Manufacturing Information (PMI), both as Polylines and semantically based on Representation, User Defined Attributes, and Supplemental Geometry. Production models are provided for assemblies and piece parts. The basis for the production test cases is native CAD models. Each test case therefore originates from a single CAD system, and the set of test cases to be pre-processed (converted to STEP files) is unique for each CAD system. After pre-processing, the resulting STEP files are then to be imported/post-processed/read in by the rest of the participants. ## 1.1 Functionality tested in this round Functionality tested in this round relates to: - Product Manufacturing Information (PMI) describes the capability to embed information about dimensions, tolerances and other parameters which are necessary input for the manufacturing of the part from the 3D model. Past tests in the CAx-IF included the 'representation' approach, i.e. transport the PMI in a re-usable way, without displaying it in the 3D model. In Round25J, the focus will be on two different ways for the 'presentation' of PMI in the 3D model: - "Polyline Presentation" refers to breaking down each annotation into polylines and arcs, and exchanging them as wireframe geometry. This preserves the exact shape of the annotation, but is human readable only. - "Representation and Semantic Presentation" relies on the "Representation" capability to render the information contents to be displayed. These are supplemented with basic styling and positioning information, to enable the importing CAD system to re-create the annotation elements using its internal PMI capability, and may be supplemented with additional textual information. - User Defined Attributes are descriptions or values that can be added by the user in the CAD system and associated with a part or geometric elements in the model. Material or production costs are an example for this. This is the third test of this capability. - Supplemental Geometry defines all geometric elements in a model that do not belong to the manufactured shape of the part, but serve as a reference basis for other information, such as the center line of a hole for example. This will be the third test of this functionality. - Production Models are included in this round of testing in addition to the synthetic models for the above capabilities. #### 1.2 General test instructions for this round The general procedures for communication of models and statistics are outlined in a separate document 'General Testing Instructions'. The general instructions can be retrieved from CAx Implementor Forum web sites. The latest version is v1.7, dated July 2008. ## 1.3 Preliminary testing schedule The following schedule has been agreed on for Round 25J: | Date | Action | |-----------------------|--| | December 9, 2009 | Test Suite available / | | (Wed) | 1 st CAx Implementor Forum conference call | | ASAP | Production Models released | | January 7, 2010 (Thu) | Initial STEP files and native stats due | | January 29 (Fri) | STEP files and native stats frozen | | February 3 (Wed) | Target stats due / 2 nd conference call | | March 5 (Fri) | Target stats frozen | | March 10 (Wed) | Pre-release of final stats / 3 rd conference call | | March 16 (Tue) | Review meeting for test round | | March 17-18 | CAx Implementor Forum meeting, | | (Wed – Thu) | Gaithersburg, MD, USA | The CAx-IF meeting will take place in conjunction with the 2010 PDES, Inc. spring offsite meeting, and a LOTAR International workshop. In addition, conference calls and web sessions will be available for those not attending the meeting to dial in. # 1.4 Copyrights on test cases Not all of the production test cases which were provided by the PDES, Inc. and ProSTEP iViP member companies are fully released for any purpose. The least common denominator is that the test cases can be freely distributed among the ProSTEP iViP / PDES, Inc. Round Table participants and can be used for any purposes that are related to CAx-IF testing (i.e. testing, documentation of testing efforts), as long as a reference to the originating company is made. The test cases must not be used for any purposes other than the CAx-IF testing or outside of PDES, Inc. and ProSTEP iViP. # 2.0 Synthetic test case specifications ## 2.1 Model PP1: PMI Polyline Presentation #### 2.1.1 Motivation Product Manufacturing Information is required for a number of business use cases in the context of STEP data exchange. Among others, they are a prerequisite for long-term data archiving. In addition, the PMI can be used to drive downstream applications such as coordinate measuring and manufacturing. For documentation and long-term archiving purposes, the Polyline Presentation approach was suggested and developed by the LOTAR project group. It presents the PMI within the 3D model, broken down into lines and arcs, so that is looks exactly as generated by the native system. ## 2.1.2 Approach The approach to be used is described in the latest working draft (version 2.5 dated January 19, 2010) of the "Recommended Practices for PMI Representation & Presentation", which can be found in the member area of the CAx-IF web sites under "Information on Round25J of Testing". Polyline annotations and the definition of saved views are in scope for this round of testing, as well as validation properties to verify the exchange of the Polyline transfer. The files shall be in either AP203 Ed.2 or AP214 Ed.3 format. ## 2.1.3 Testing Instructions In Round 25J, the PMI test models from the LOTAR pilot activities shall be used, as in the previous rounds of testing. <u>Note</u> that <u>all</u> CAx-IF participants, even / especially those who have not implemented Polyline Presentation, are asked to import the resulting STEP files. Since the annotations basically are broken down into wireframe geometry (which has been tested in R20J-R21J), the question is to what extend the information can be found by arbitrary CAD systems. Figure 1: Example for a user-provided part with tolerances. Compared to the Polyline presentation as tested in Round22J, the following additional functionality shall be included in the test files provided for this round of testing, as far as it has been implemented by the CAx-IF participants and is described in the Recommended Practices: - <u>Definition of "saved views"</u> if supported, include at least one saved view in the model, which contains a subset of annotations in the file, and provides a pre-defined position of the model in the design space. It is recommended to provide a screenshot illustrating the model position and annotation subset, in addition to the screenshot showing the overall model layout. - <u>Cross-highlighting of annotations and annotated shape</u> if supported, include in the STEP file the information necessary to maintain the association between annotations and the annotated shape elements in a way, that after import, when highlighting an annotation, the shape elements annotated by it are highlighted, too, and vice versa. - PMI Validation Properties for Polylines if supported, include the validation properties - "Polyline Curve Length" (section 10.3.1 in the PMI Rec.Pracs.) - "Polyline Centroid" (section 10.3.2) - "Equivalent Unicode String" (section 10.3.3) in the files, and evaluate these after import. <u>Note</u> that for the creation of the Equivalent Unicode String, the mapping as defined by the "Unicode String Project" report (Revision H) shall be used. This document is available in the member areas of the CAx-IF homepages, under "Relevant LOTAR Documents for CAx-IF Testing". In addition to these functionalities, the capability to exchange "filled characters" via Polyline Presentation has been discussed. A PP1 file may contain classic "3D Polylines", used to transfer stroked or outline font, or "Filled Polylines" to transfer filled font, or both. The 'scope' field in the statistics shall be used to indicate the file contents. #### 2.1.3.1 Test Models Test Models for CATIA V5 and UG NX are available in the CAx-IF File Repository under "Round 22J > GDandT Test Models". Additional test models containing PMI data for other CAD systems are welcome. #### 2.1.3.2 Statistics For each STEP file submitted for the PP1 model, vendors must submit the corresponding native statistics to the online statistics and results database, CAESAR. To do so, log in to CAESAR, go to "Test Rounds > R25J Test Cases > PP1 Data Sheet", and either fill in the web form, or upload a comma-delimited file (.csv) with the data as listed below. <u>Note</u> that in order to count the PMI elements for the statistics, as per agreement during the Round 22J Review Meeting, the names of the <code>geometric_curve_sets</code> shall be considered. See Table 6 (section 8.2) in the PMI Recommended Practices for details. | column name | description | | |-------------|--|--| | model | The name of the test model, here: 'PP1' | | | system_n | The system code of the CAD system creating the STEP file | | | system_t | The system code of the CAD system importing the STEP file. For native stats, enter 'stp' | | | unit | The unit the model is designed in | | | volume | Total volume of all solids | | | area | Total surface area of all solids | | | scope | A short designation of the scope tested in the model. In the case of PP1 it is one of "3D Polylines", "Filled Polylines" or "3D and Filled Polylines". | | | сх | Centroid of all solids | | | су | | | | CZ | | | | dimension | The number of dimensions processed | | | datums | The number of datums processed | | | |---------------|--|--|--| | datum_targets | The number of datum targets processed | | | | tolerances | The number of tolerances processed | | | | labels | The number of labels processed | | | | saved_view | The name of the Saved View which is the basis for the view-related statistics | | | | view_annot | The number of annotations included in the specified saved view. | | | | view_pos | pass/fail, whether the position stored for the Saved View could be restored successfully. It is recommended to provide a screenshot illustrating the position of the model for the specified view. | | | | highlight | all/partial/none – whether the cross-highlighting for annotations and annotated shape elements works correctly | | | | poly_length | all/partial/none – whether the lengths of the Polyline annotation was validated successfully for all, some or none of the given annotations. | | | | poly_cent | all/partial/none – whether the positioning of the Polyline annotation was validated successfully for all, some or none of the given annotations. | | | | eq_unicode | all/patial/none - if the encoding of the equivalent Unicode string was correct for all, some or none of the given annotations. | | | | valid_poly_vp | pass/fail, is the instantiation of the Polyline-related validation properties in the STEP file as per the PMI recommended practices? | | | | date | The date when the statistics were last updated (will be filled in automatically) | | | | issues | A short statement on issues with the file | | | # 2.2 Model SP1: PMI Representation & Semantic Presentation #### 2.2.1 Motivation Product Manufacturing Information is required for a number of business use cases in the context of STEP data exchange. Among others, they are a prerequisite for long-term data archiving. In addition, the PMI can be used to drive downstream applications such as coordinate measuring and manufacturing. In contrast to the Polyline approach, Semantic Presentation relies on the PMI Representation capability to define the contents to be displayed, and supplements these with positioning and styling information to create the appropriate notes in 3D space. (Associative) 3D Annotations including Unicode characters have been tested in previous rounds in preparation for this test case. ## 2.2.2 Approach The approach to be used is described in the latest working draft (version 2.5 dated January 19, 2010) of the "Recommended Practices for PMI Representation & Presentation", which can be found in the member area of the CAx-IF web sites under "Information on Round25J of Testing". The files shall be in either AP203 Ed.2 or AP214 Ed.3 format. ## 2.2.3 Testing Instructions In Round 25J, the PMI test models from the LOTAR pilot activities shall be used, as in the previous rounds of testing. Figure 2: Example for a user-provided part with tolerances. In addition to the Semantic Presentation as tested in Round22J, the following additional functionality may be included in the test files provided for this round of testing, as far as it has been implemented by the CAx-IF participants and is described in the Recommended Practices: <u>Definition of "saved views"</u> – if supported, include at least one saved view in the model, which contains a subset of annotations in the file, and provides a pre-defined position of the model in the design space. It is recommended to provide a screenshot illustrating the model position and annotation subset, in addition to the screenshot showing the overall model layout. <u>Cross-highlighting of annotations and annotated shape</u> – if supported, include in the STEP file the information necessary to maintain the association between annotations and the annotated shape elements in a way, that after import, when highlighting an annotation, the shape elements annotated by it are highlighted, too, and vice versa. **Note** that models with representation only, semantic presentation only, or both, are allowed in this test. This shall be stated in the "scope" column in the statistics. #### 2.2.3.1 Test Models Test Models for CATIA V5 and UG NX are available in the CAx-IF File Repository under "Round 22J > GDandT Test Models". Test Models containing PMI data for other CAD systems are welcome. #### 2.2.3.2 Statistics For each STEP file submitted for the SP1 model, vendors must submit the corresponding native statistics to the online statistics and results database, CAESAR. To do so, log in to CAESAR, go to "Test Rounds > R25J Test Cases > SP1 Data Sheet", and either fill in the web form, or upload a comma-delimited file (.csv) with the data as listed below. <u>Note</u> that in order to count the GD&T elements for the statistics, as per agreement during the Round 22J Review Meeting, the actual STEP entity types (datum, datum_target,...) shall be considered. | column name | description | | |-------------|--|--| | model | The name of the test model, here: 'SP1' | | | system_n | The system code of the CAD system creating the STEP file | | | system_t | The system code of the CAD system importing the STEP file. For native stats, enter 'stp' | | | unit | The unit the model is designed in | | | volume | Total volume of all solids | | | area | Total surface area of all solids | | | | A short designation of the scope tested in the model. In the case of SP1 it is one of | | | scope | - "Representation only" | | | | - "Semantic Presentation only" | | | | - "Representation and Semantic Presentation" | | | сх | Centroid of all solids | | | су | | | | cz | | | | dimension | The number of dimensions processed | | | datums | The number of datums processed | |---------------|--| | datum_targets | The number of datum targets processed | | tolerances | The number of tolerances processed | | labels | The number of labels processed | | saved_view | The name of the Saved View which is the basis for the view-related statistics | | view_annot | The number of annotations included in the specified saved view. | | view_pos | pass/fail, whether the position stored for the Saved View could be restored successfully. It is recommended to provide a screenshot illustrating the position of the model for the specified view. | | highlight | all/partial/none - whether the cross-highlighting for an-
notations and annotated shape elements works cor-
rectly | | date | The date when the statistics were last updated (will be filled in automatically) | | issues | A short statement on issues with the file | ## 2.3 Model UD2: User Defined Attributes #### 2.3.1 Motivation Most CAD systems allow the user to add user-defined attributes in the form of key-value pairs to a part or shape. These carry information which can not be derived from the geometry, such as material costs, but is of relevance to downstream processes or for archiving purposes. In Round 25J, this capability will be tested for the third time. ## 2.3.2 Approach The approach to be used to transfer the user-defined attributes is described in the Draft Recommended Practices for User Defined Attributes (v0.5), which are available in the member area of the CAx-IF homepages under "Information on Round 25J of Testing". User Defined Attributes can be attached to either a single part, an instance of an assembly component or a geometric element of its shape. Each attribute can be descriptive (i.e. the value is a text string) or numeric (with and without unit). Validation Properties for User Defined Attributes can be given by creating a count of how many attributes are attached where in model structure, i.e. at the part/product level or various classes of geometric elements. ## 2.3.3 Testing Instructions The User Defined Attributes shall be tested using the well-known as AS1 model. #### 2.3.3.1 Construction of the model The following attributes are suggested values for use in the UD2 test. <u>Note</u> that the locations where the attributes should be attached (solid/surface, instance, part/product) are proposals, not mandatory. All attribute types should be contained in the model and attached in the file structure where meaningful for the originating system. - To one of the faces of the 'plate' part, add a descriptive attribute (see section 5.1 in the Recommended Practices): - Name: 'Surface Finish' - o Description: 'Anodize per specification MIL-A-8625, Type I' - To the two instances of the L-bracket assembly, add a value attribute each (see section 5.2 in the Recommended Practices): - Name: 'asm_step' - Values: 1. and 2. respectively - To the 'plate' part, add a measure attribute (see section 5.3 in the Recommended Practices): - Name: 'weight' - Unit: kilograms (kg) or pounds (lbs) - Value: <calculated weight of component preferred but generic value can be provided if necessary> It is allowable to add additional information to each of the attributes (see section 5.4 in the Recommended Practices). In addition, Validation Properties for the UDA shall be included, giving at least the following values: - the sum of all UDA attached at the part/product level - the sum of all UDA attached to geometric elements, for those systems capable of doing so. ## 2.3.3.2 Statistics For each STEP file submitted for the UD1 model, vendors must submit the corresponding native statistics to the online statistics and results database, CAESAR. To do so, log in to CAESAR, go to "Test Rounds > R25J Test Cases > UD1 Data Sheet", and either fill in the web form, or upload a comma-delimited file (.csv) with the following data: | column name | description | |---------------|--| | model | The name of the test model, here: 'UD2' | | system_n | The system code of the CAD system creating the STEP file | | system_t | The system code of the CAD system importing the STEP file. For native stats, enter 'stp' | | face_attr | pass/fail, have the User Defined Attributes at the solid/surface level been processed correctly? | | instance_attr | pass/fail, have the User Defined Attributes at the assembly component instance level been processed correctly? | | part_attr | pass/fail, have the User Defined Attributes at the part/product level been processed correctly? | | valid_attr | pass/fail, is the instantiation of the user defined attributes as per the recommended practices? | | uda_part_vp | pass/fail, has the number of User Defined Attributes at the Part/Product level be processed correctly? | | uda_geo_vp | pass/fail, has the number of User Defined Attributes at the Geometry level be processed correctly? | | date | The date when the statistics were last updated (will be filled in automatically) | | issues | A short statement on issues with the file | # 2.4 Model SG1: Supplemental Geometry #### 2.4.1 Motivation When designing a part in a CAD system, geometrical elements are often created that do not belong to the actual, i.e. manufactured, shape of the part, but are used to either create other geometric shapes, or to relate additional information about the part. The main business applications for this capability are the transfer of reference elements for PMI information, such as cutting planes and center lines, and named axis placements as tool targets for machining applications. In Round 25J, this capability will be tested for the second time. In preparation for the release of the final (public) version of the corresponding Recommended Practices, all participants in this test case are asked to provide at least one test file which has only Supplemental Geometry, without PMI attached to it. These files, if tested successfully and syntactically and structurally clean, will be added to the STEP File Library on the CAx-IF homepage. Additional test files with PMI attached are always welcome. ## 2.4.2 Approach The approach to be used is described in the Draft Recommended Practices for Supplemental Geometry (v0.4), which is available in the member area of the CAx-IF homepages under "Information on Round 24J of Testing". ## 2.4.3 Testing Instructions The transfer of supplemental geometry will be tested using a simple test model (see below). The following elements shall be included: - The center line for the cylindrical hole through the part - A reference plane at the upper end of the truncated cone, its face normal parallel to the center line of the hole - Four named axis placements along the outer top edge of the part <u>Note</u> that when comparing the results, the supplemental geometry elements may look differently in different CAD systems (e.g. bounded vs. unbounded plane). The essential criteria are they correctly identified as supplemental geometry elements in the target system. In addition to the scope tested in previous rounds, for those systems supporting it, PMI elements shall be added referencing supplemental geometry elements. For an example illustration, see the Supplemental Geometry Rec.Pracs. It is recommended to add a datum to the reference plane and a dimension to the center axis, plus a tolerance referencing the datum to define meaningful PMI content. Both Polyline or Semantic Presentation can be used to display these. It is recommended to note the approach used in the "issues" column of the statistics. If no PMI elements are included, the respective columns in the statistics shall be filled with "na". #### 2.4.3.1 Construction of the SG1 model Figure 2: Sketch of the SG1 model. Dimensions for the part are arbitrary; suggested values are height 15cm, base diameter 10cm and tip diameter 5cm. ## 2.4.3.2 Statistics For each STEP file submitted for the SG1 model, vendors must submit the corresponding native statistics to the online statistics and results database, CAESAR. To do so, log in to CAESAR, go to "Test Rounds > R25J Test Cases > SG1 Data Sheet", and either fill in the web form, or upload a comma-delimited file (.csv) with the following data: | • | | |------------------|--| | column name | description | | model | The name of the test model, here: 'SG1' | | system_n | The system code of the CAD system creating the STEP file | | system_t | The system code of the CAD system importing the STEP file. For native stats, enter 'stp'. | | unit | The unit the model is designed in | | volume | Total volume of all solids | | area | Total surface area of all solids | | сх | Centroid of all solids | | су | | | cz | | | center_line | pass/fail, if the center line was found in the STEP file and correctly displayed in the CAD system. | | ref_plane | pass/fail, if the reference plane was found in the STEP file and correctly displayed in the CAD system. | | tool_tgt | pass/fail, if the named axis placements (tool targets) were found in the STEP file and correctly displayed in the CAD system or identified in the product structure. | | valid_sup
geo | pass/fail, whether the implementation of the supplemental geometry elements in the STEP file is as defined in the recommended practices. | | dimension | The number of dimensions processed | | datums | The number of datums processed | | tolerances | The number of tolerances processed | | labels | The number of labels processed | | date | The date when the statistics were last updated (will be filled in automatically) | | issues | A short statement on issues with the file | | | * | # 3.0 Production models: PM23 #### 3.1 Motivation In an attempt to test the STEP processors on real world models, the CAx Implementor Forum will be testing production parts in this round and future rounds of CAx-IF testing. These production models are characteristic for components and assemblies that are encountered in the aerospace and automotive industries. PDES, Inc. and ProSTEP iViP member companies and vendors have supplied these models. ## 3.2 Approach Testing of Production Models focuses mainly on data quality, not on specific functionalities. Assemblies should therefore be exported as a single STEP file. The file format should be either AP214-IS, AP214e3 or AP203e2. In order to support quality validation of the Production Model exchange, all vendors shall include the maximum level of Validation Properties they support. In addition, since Round18J, the native and target statistics will include ValProps. All source system native models and STEP files may be analyzed for data quality by the "CADIQ" developers. STEP syntax and structure will be checked by the CAx-IF facilitators. In order to enable an end-to-end analysis of the data exchange, all vendors importing Production Model STEP files are asked to submit the resulting target model from their system along with or instead of the target statistics. # 3.3 Testing Instructions The native models as provided by the user companies should be exported to STEP by all participants who maintain a STEP processor for the respective CAD system. The native models will be made available on the CAx-IF File Repository in the member area under "Round 25J > Production Models". #### 3.3.1 List of available models | Model name | Stats code | Native System | Remarks | |-------------------------------|------------|---------------|---| | Display Select Panel Assembly | pm23_ug | UG NX | Available from the File Repository in the CAx-IF Member Area, folder "/secure/CAX-IF_Files/Round 23J/Production Models/UGNX" | | | | | | | | | | | | | | | | #### 3.3.2 Results For each STEP file submitted for the PM23 model, vendors must submit the corresponding native statistics to the online statistics and results database, CAESAR. To do so, log in to CAESAR, go to "Test Rounds > R25J Test Cases > PM23 Data Sheet", and either fill in the web form, or upload a comma-delimited file (.csv) with the following data: | column name | description | | | |-------------------|---|--|--| | model | The name of the test model, e.g. 'PM23' (see stats code above) | | | | system_n | The system code of the CAD system creating the STEP file | | | | system_t | The system code of the CAD system importing the STEP file. For native stats, enter 'stp' | | | | unit | The unit the model is designed in | | | | volume | Total volume of all solids | | | | validation_volume | Total volume of all solids as received via the validation property capability | | | | valid_vol | pass/fail, is the instantiation of the validation property 'volume' in the STEP file as per the recommended practices for validation properties? | | | | area | Total surface area of all solids | | | | validation_area | Total surface area of all solids (entire assembly), as received via the validation property capability | | | | valid_area | pass/fail, is the instantiation of the validation property 'area' the STEP file as per the recommended practices for validation properties? | | | | сх | Centroid of all solids | | | | су | | | | | cz | | | | | validation_cx | Centroid of all solids (entire assembly) as received via the validation property capability | | | | validation_cy | | | | | validation_cz | | | | | valid_cent | pass/fail, is the instantiation of the validation property 'centroid' in the STEP file as per the recommended practices for validation properties? | | | | model_size | model_size is the length of the space diagonal of the 3dimensional bounding box enclosing all entities in the model. The result is the Centroid deviation divided by the model_size | | | | shoveit_ok | pass/fail, indicates whether the model passed comparison of
the Extended GVP (i.e. no parts/subassemblies misplaced), or
failed. | | | | valid_shoveit | pass/fail, indicates whether the target system considers the implementation of the instance information valid as per the recommended practices | |---------------|--| | nain | The date when the statistics were last updated (will be filled in automatically) | | issues | A short statement on issues with the file |